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For a class of dewrministic systems the necessary condition for chaos is that the system’s Melnikov
function have simple zeros. The behavior of those systems’ stochastic counterparts is similarly
characterized by their Melnikov processes. We summarize: (1) recent research by the authors on
the use of Melnikov processes to obtain weak upper bounds for rates of escape from a potential wall
induced by a variety of types of noise, including dichotomous noise, and (2) applications of
Meinikov processes in oceanography, the investigation of column snap-through induced by
stochastic loads, nonlinear control, stochastic resonance, and the behavior of auditory nerve fibers.

1. Introduction

Chaotic dynamics theory and its applications were until recently concerned primarily with
deterministic systems. In this paper we examine applications of chaotic dynamics to a
wide class of stochastic dynamical systems.

Deterministic multistable systems excited harmonically can have chaotic motions
featuring irregular escapes. Chaotic motions in such deterministic systems and motions
in those systems’ stochastically excited counterparts can be virtually indistinguishable
visually (Simiu and Frey, 1996a). More importantly, those motions have common
mathematical properties allowing the application to the stochastic systems of an approach
originally developed for the deterministic case: the Melnikov approach. This is a
consequence of (1) Wiggins’ (1988) result that systems capable of chaotic behavior under
harmonic excitation can also behave chaotically if the excitation is quasiperiodic, and (2)
the application of this result to systems excited by physically realizable stochastic
processes, which can be approximated arbitrarily closely by random quasiperiodic sums
(Frey and Simiu, 1993). For stochastic systems the Melnikov approach -- referred to as
the stochastic Melnikov approach -- is useful in problems involving escapes.

The purpose of this paper is to provide a summary of recent research performed by
the authors on the stochastic Melnikov approach. The techniques we use are based on
Melnikov conditions for the occurrence of chaos. For both deterministic and stochastic
systems these conditions are necessary but not sufficient. Results yielded by the Melnikov
approach are therefore weak, though less so for transient than for steady state motions.
For example, for a buckled column excited harmonically at a given frequency, the
Melnikov approach yields the excitation amplitude below which escapes (i.e., snap-
through) cannot occur. Numerical simulations show, however, that steady state snap-
through is not observed unless that amplitude is exceeded by a factor of, say, two,

Such limitations notwithstanding, the Melnikov approach is a useful addition to the
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array of existing nonlinear dynamics tools insofar as it can yield qualitative results and
insights into the behavior of multistable systems that may not be obtainable by other
means. This is all the more true as the Melnikov approach, which in theory is valid only
for systems with asymptotically small damping and excitation, tums out in practice to be
applicable even when the damping and excitation are relatively large.

An overview of Melnikov theory for a class of planar harmonically, quasiperiodically
and stochastically excited systems is presented in Section 2. Section 3 presents results
on upper bounds for escape rates obtained by the stochastic Melnikov approach. Sections
4 through 9 discuss applications to physical, engineering and biological systems.

2. Overview of the Melnikov Approach

2.1 Unperturbed Integrable Systems With Homoclinic or Heteroclinic Orbits. Perturbed
Systems. Persistence Theorem. Melnikov Distance

The phase plane diagrams of a wide class of frictionless and unforced planar multistable
systems have one or more hyperbolic saddle points from which nongeneric orbits emanate
in forward and reverse time. These orbits form a separatrix between regions of the phase
plane. The separatrix is impermeable, that is, motions starting inside (outside) the
separatrix stay inside (outside) it for all time. The nongeneric orbits are typical of
Hamiltonian multistable systems and are called homoclinic or heteroclinic depending upon
whether they join saddle points that coincide or are distinct.

The evolution of a planar system may also be represented in a three-dimensional
phase space with orthogonal coordinate axes Ox, Ox, Or. A homoclinic orbit can be
interpreted in that space as the intersection with a plane of section ¢=const of (1) the
surface consisting of the set of all trajectories that approach the axis I',=Or
asymptotically in forward time, and (2) the surface consisting of the set of all trajectories
that approach Or in reverse time. These surfaces are the stable manifold and the unstable
manifold, respectively. Similar definitions apply to the heteroclinic case. Like their
intersections with a plane of section f=const, the stable and unstable manifold coincide.

Assume the system is subjected to a perturbation of order ¢ < 1. If the perturbation
is bounded and sufficiently smooth, it follows from the persistence theorem that the line
I',= O persists under perturbation as a smooth curve T',=T,+0Xe), and that the perturbed
system has a stable manifold and an unstable manifold contained in an O(e) neighborhood
of the unperturbed manifolds. The perturbed stable and unstable manifolds are the
surfaces’ consisting, respectively, of the sets of all trajectories that approach T,
asymptotically in forward time and that approach TI', asymptotically in reverse time.

Owing to the perturbation, the stable and unstable manifolds no longer coincide. The
Melnikov distance is the distance between the separated stable and unstable manifolds,
measured along a line normal to the unperturbed manifolds.

2.2 Perturbed Systems with Harmonic Excitation. Melnikov Functions. Necessary
Condition for Chaos

We now consider the system
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2= -V (x)+e[G(N) -] (1

and assume that the perturbation is G(r)=vycos(wf) and V(x) is a multi-well potential. It
can be shown that, to first order, the Melnikov distance is proportional to the Meinikov
function. Under certain conditions (Wiggins, 1988), for the system and assumptions under
consideration the Melnikov function has the expression

M(r,,t') = —Bc+yS(w)sinw(r,+1") @

where the constant ¢ and the Melnikov scale factor S(w) depend on the homoclinic orbit,
and 7, and ¢’ are time coordinates defining the position of a point on the unperturbed
manifolds. For sufficiently small ¢, if the Melnikov function has simple zeros, the stable
and unstable manifolds of the perturbed system intersect transversely. If the Melnikov
function is bounded away from zero the stable and unstable manifolds do not intersect.
For Eq. 2 the condition for transverse intersection

+¥S(w) > Be. (&)

The traces of intersecting stable and unstable manifolds on a plane of section form a
homoclinic tangle, exhibiting lobes defined by segments of the homoclinic tangle, and a
curve, called pseudoseparatrix, consisting of the union of segments that most closely
approximates the homoclinic or heteroclinic orbit of the unperturbed system. Transport
from the inside to the outside of the pseudoseparatrix and vice-versa is effected by
wmnstile lobes (Wiggins, 1992). The mapping of ceratin areas of the phase plane by the
nonlinear dynamical system entails exparnsion, contraction and folding leading to
geometrical structures that may be studied by symbolic dynamics techniques. Associated
with such structures are trajectories that may be semsitive to initial conditions, and
therefore imply the existence of a positive Lyapounov exponent. The Smale-Birkhoff
theorem states that for a harmonically excited planar system to be chaotic its Melnikov
function must have have simple zeros (Melnikov necessary condition for chaos).

Unlike the separatrix of an unperturbed system, which is impermeable in the sense
that it cannot be crossed by any orbit, a pseudoseparatrix can be permeable. This allows
the occurrence of chaotic motions featuring escapes from a preferred region. The
mechanism by which such motions occur is associated with the action of the lobes and
is referred to as chaotic transport through a pseudoseparatrix. Since chaotic motions with
escapes are a form of chaotic behavior, it is clear that they cannot occur unless the
Melnikov necessary condition for chaos (i.e., Eq. 3) is satisfied.

2.3 Perturbed Systems With Quasiperiodic Excitation. Generalized Melnikov Functions
It can be shown that, if in Eq. 1 the excitation G(r) is quasiperiodic; that is, if
N

G(t)= T ycos(ws+0,) 4)
i=1
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then the Melnikov distance is proportional, to first order in ¢, to the generalized Melnikov
function (a term used by Beigie et al., 1991)

N
M(1,,t)=—Bc+L vS(w)sinfw(r, +1)+6,] )]
i=]

For small perturbations the stable and unstable manifolds intersect transversely if the
generalized Melnikov function has simple zeros, that is, if

N
L yS(w) > B¢ ) (6)

i=1

By virtue of a simple extension of the Smale-Birkhoff theorem (Beigie et al., 1991), Eq.
6 is the Melnikov necessary condition for chaos in quasiperiodically excited systems (1).

2.4 Perturbed Systems With Stochastic Excitation. Melnikov Processes

The extension to stochastically excited systems of results.obtained for the quasiperiodic
excitation case follows from the fact that physically realizable stochastic processes can
be approximated as closely as desired by quasiperiodic sums with random parameters.

We illustrate this statement for a process G(f) with Gaussian distribution, unit
variance, and one-sided spectral density 2x¥ (w). Such a process can be approximated
by the Shinozuka representation G(t)=G,{¢), where

N

GM)=(Q2/N)* I cos(wi+¢) ™
i=1

where {w; i=1,2,..,N} and {¢; i=1,.2,..N} are independent identically distributed
nonnegative random variables with probability density ¥, and uniform distribution over
the interval [0,2x], respectively. The parameter N of the model is finite, although if
necessary it can be arbitrarily large. It is easy to show that the spectral density of Gt)
is 2x¥ (w), that is, the same as that of G(r). Other approximate representations of
stochastic processes are available -- see, e.g., Rice (1954).

The ensemble of Melnikov functions induced by a stochastic process G(¢) is referred
to as a Melnikov process (Simiu, 1996; Simiu and Frey, 1996). Since a Gaussian
excitation process is unbounded, one of the requirements for the proof of the persistence
theorem is not satisfied. No Melnikov process can therefore be associated with a
Gaussian excitation. However, the Melnikov process is defined if the excitation process
can be assumed to have the form of G\{f), which is nearly Gaussian. We therefore use
in the expression for the Melnikov process the near-Gaussian process G(/) instead of the
strictly Gaussian process G(7). This is justified by the following fact. Physical processes
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to which a Gaussian model is applied have marginal distributions induced by a finite --
albeit large number -- of contributions, rather than by an infinite number as is assumed
in the central limit theorem. If in Eq. 1 G(/) is a Gaussian distribution, substitution of
the approximation Gu(¢) for G(t) yields an expression for the Melnikov process similar
to Eq. 5. The expectation and spectral density of the Melnikov process can be shown to
be, respectively,

EIM (1)) = —8c, ¥ w) =277 SH(w) ¥ o () (8a,b)

(Frey and Simiu, 1993). Knowledge of the spectral density allows the estimation of the
mean time between consecutive zero upcrossings for the Melnikov process, 7,. Simple
chaotic transport considerations can then be used to show that 7, is a weak lower bound
for the system’s mean escape time 7, (Simiu, 1996; Simiu and Frey, 1996). As shown
in the next section, under certain conditions weak lower bounds can be obtained for the
probability that no escapes will occur during a specified time interval. Melnikov
processes induced by other types of stochastic processes, for example white noise or
dichotomous noise, can similarly be defined (Simiu and Frey, 1996b).

3. Melnikov Processes and Escapes from Preferred Regions of Phase Space
3.1 Chaotic Behavior and Escapes

The result that motion in near-integrable systems with escapes induced by Gaussian
excitations is sensitive to initial conditions is a consequence of the Smale-Birkhoff
theorem and is relatively recent (Frey and Simiu, 1993).

We mentioned that, for a class of near-integrable deterministic planar systems with
quasiperiodic excitation, escapes from a potential well are associated with the mechanism
of chaotic transport across the pseudoseparatrix. The same mechanism is at work for
those systems’ stochastically excited counterparts, since each of the realizations of the
stochastic excitation can be approximated by a quasiperiodic function. As in the
deterministic case, a phase space slice through the stable and unstable manifolds induced
by a realization of its stochastic excitation has a pseudoseparatrix, entraining and
detraining lobes, and turnstile lobes.

3.2 Condition Guaranteeing the Non-occurrence of Chaos in Systems Excited by Finite-
tailed Stochastic Processes. Example: Dichotomous Noise

Melnikov processes induced by finite-tailed random excitations (i.e., by random processes
whose marginal distributions have finite tails) are also finite-tailed. Therefore, parameter
regions exist for which the Melnikov necessary condition for chaos can never be satisfied.
A criterion guaranteeing the nonoccurrence of chaos and, a forriori, of chaotic exits from
a well, can be derived from the requirement that the system parameters be contained in
those parameter regions. As an example (Sivathanu, Hagwood and Simiu, 1995), we
consider the perturbed standard Duffing-Holmes equation
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17% : (%)

X, = x,~x," +e[yG(0)—fx,)] (9b)
(>0, 0<e«1), where G(f) is the coin-toss square wave dichotomous noise process

G = a,, [a+(n— D, <t<(a+n)t, (10

n is the set of integers, the random variable o is uniformly distributed between 0 and 1,
- the independent random variables a, take on the values —1 and 1 with probabilities 1/2
and 1/2, respectively, and ¢, is a parameter of G(r). Let G,(f) be an approximation to
G(1) consistent with persistence theorem requirements. For a system with %(-1) =h(),
where x,(1) is the abscissa of the homoclinic orbit, the Melnikov process due to G,(1) is

o0
M1t = § RE)G(r,+1'—§)dE — 48/3 (11a)
— 00
(= -]
= { hEHG(r,+1' —£)=[G(r,+1' =§) =G (r,+1' - E)}dE — 48/3. (11b)
— 0o

Since the contribution of the difference G(7,+t' —£)—G,(r,+t' —£) to the integral of Eq.
12b can be made as small as desired, we can write M,(7,,t') =M(r,,t') where, formally,

-

M(r,.t") = § h(E)G(r,+t'—§)dE — 4B/3. (12)

- 00

Therefore, when writing the Melnikov necessary condition for chaos, Eq. 12 may be
used; there is no need to develop an explicit expression for G,(¢).
For Eq. 9, h(/)=2'? secht tanht. It follows immediately from Egs. 10 and 12

M@0 = —48/3 + 2'*yF(p) (13
4
F(t) = Xa{-—sech[(n+a)t,—1]+sech{(n+a—1)t,—1]} (14
n=-—{

where r=7,+¢, and ¢ is sufficiently large. The area under the curve A(f) in a half-planc
is 2'2. It follows from the definition of F(f) that ~2 <F(r)<2 (the integral in Eq.14
yields F(f)=2 if «=0, a, = 1 for all n such that >0 and a, = —1 for all n such that
1<0). Since the necessary condition for chaos (and, therefore, the necessary condition
for escapes) is that M(f) have simple zeros, it follows from Eq. 13 that chaos cannot
occur if F(f) does not reach the zero line (48/3)(2'y), or
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F(t) < 0.94288/y. (15)

Since |F()| <2, chaos cannot occur if the following remarkably simple criterion
¥/B < 0.471 ' (16)

is satisified. Figures 1a and 1b show time history realizations for dichotomous noise with
parameters £,=1.0, €=0.1, B=1.5 and, respectively, v/f=0.469 <0.471, v/8=1.887.
The motion of Fig. la is confined to one well. Its irregularity is due to the stochastic
nature of the excitation. The chaotic motion of Fig. Ib is similar to chaotic motions
induced in the standard Duffing-Holmes oscillator by harmonic or quasiperiodic
excitation. Its irregularity is due to both the chaotic nature of the motion and the
stochastic nature of the excitation. Sensitivity to initial conditions (i.e., the positivity of
the largest Lyapounov exponent) was verified numerically for the motion of Fig. 1b.

3.3 Melnikov-based Lower Bounds for Mean Escape Time and for Probability of Non-
occurrence of Escapes During a Specified Time Interval. Effective Melnikov Frequencies

Escapes from preferred regions associated with the potential wells are due to chaotic
transport across the pseudoseparatrix. The transport is effected by the turnstile lobes of
the system’s intersecting stable and unstable manifolds. -
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FIGURE 1. (a) Non-chaotic and (b) chaotic time histories x(t), induced by dichotomous noise.
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On average no transport across the pseudoseparatrix can occur during a time interval
smaller than the mean time between consecutive zero upcrossings of the Melnikov
process, denoted 7,. Therefore, the mean time between consecutive zero upcrossings r,
of the Melnikov process is a lower bound for the system's mean time of escape Jroma
well 7,. Franaszek et al. (1997) present results which show that, for small perturbations
by either Gaussian and dichotomous noise, this lower bound is weak.

We consider the system (9) and assume that G(t) is a Gaussian process. The
Melnikov process induced by white or colored Gaussian noise is Gaussian with mean,
spectral density and standard deviation —k, 2x¥,(w) and o, respectively. The mean
time between consecutive zero upcrossings for the Melnikov process is

7, = v~ exp(x’/2) o))
oo [o -]

v = (120{[ § ¥, (w)dol] | ¥, (0)dwl}'?,  k=k/o, (18a,b)
0 0

(Rice, 1954, p. 193). We now consider Melnikov-based bounds for probabilities of no
escape during a specified time interval. Provided that the escapes are rare events, the
probability that there will no zero upcrossings of the Melnikov process during a time
interval T<€, can be closely approximated by the Poisson distribution with average rate
of arrival 7,”" and a number of upcrossing event occurrences during the interval T equal
to zero, that is,

(0, =exp(~T/r,) {19)

The probability p,£0,7) is an approximate lower bound for the probability that no escapes
from a well will occur during the interval T. The probability that there will be at least
one zero upcrossing of the Melnikov process during the interval T is

Pur=1—exp(-Ti1,) 20)

The probability p,, ; is an approximate upper bound for the probability that escapes from
a well will occur during the interval T. Since, if the escapes are rare events, 7, is a weak
bound, so are p,(0,7) and p, . Even though the upper bound is very weak for small
perturbations, it may be useful in some applications. We remark that, for systems for
which escapes would be undesirable, the upper bound p,, r has the advantage of being an
estimate on the safe side.

In addition to providing lower bounds 7, for the mean escape time r,, the Melnikov
approach can be useful for qualitative assessments concerning the effect on 7, of the
spectral density of the excitation. Results of numerical simulations that provide useful
insights into this effect are shown in Franaszek and Simiu (1995).
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3.4 Slowly Varying Systems

Following Wiggins and Holmes (1987, 1988), Wiggins and Shaw (1988), who studied
the case of periodic excitation, and Simiu (1996), who extended their work to systems
with quasiperiodic and stochastic excitation, we review in this section the Melnikov
necessary condition for chaotic behavior of the following class of slowly varying systems:

d
= - Hx,y,2) + eg,(x,y,2.t:p)
dy
a
y= = e HO,2) + gty 2 tim) @n
ox

z= egy(x,y.2, ;1)

where e is small, the right-hand side is C" differentiable (r=2), H(x,y,z) is a Hamiltonian
with parameter z, x is a vector of parameters, and g, (i = 1,2,3) are time periodic,
quasiperiodic, or stochastic perturbation functions. It is shown in Wiggins and Holmes
(1987, 1988) that the Melnikov function for the harmonically excited system is

oo 00~
M(t,)= § VH(q,(t))-8(q,°(t.t +1)dt — OH(T'(2))/9z § g {q °(t.t+1)dt, (22)
— 0o . — oo

where VH={8H(q)/ax, dH(q)/3y,0H(g)/dy}, g=[8:.81.8:}, and g.(f) is the unperturbed
homoclinic orbit connecting the hyperbolic fixed point of the unperturbed system at
elevation z, to itself. The same expression can be easily shown to hold if the excitation
is quasiperiodic or stochastic (Simiu, 1996). From Eq. 22 it follows that the Melnikov
process can be interpreted as the sum of the outputs of three linear filters with inputs g,,
£ and g,, respectively. Therefore means, spectral densities, and variances of Melnikov
processes induced by additive or multiplicative stochastic excitations may be obtained.
If M(:,) has simple zeros at some time #={,, for sufficiently small e the stable and
unstable manifolds of the perturbed system intersect transversely. By virtue of
generalizations of the Smale-Birkhoff theorems chaos is possible in this case. If M(z,)=0
for all ¢,, then the stable and unstable manifolds do not intersect and chaos cannot occur.

4. Along-shore Currents Induced by Randomly Fluctuating Wind over a Corrugated
Ocean Floor

We consider a simple model of mesoscale wind-induced alongshore ocean flow over a
continental margin with variable bottom topography. The model was developed by Allen
et al. (1991) for the case of forcing by surface stresses fluctuating harmonically in time.
Simiu (1996) extended the model for the more realistic case of stochastic forcing, and
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compared results obtained for harmonic and stochastic forcing.

4.1 Offshore Flow Model. Wind Fluctuations and Wind Stresses. Melnikov Process

Averaging of the alongshore momentum equation over a wavelength of the corrugations
yields for the model flow the nondimensional equations (21), where x is the basic
nondimensional alongshore velocity, y=6¢,, z=%#x>—x+8¢,, 6=56'/(R,D), &' is the
dimensional amplitude of the ocean floor corrugations, D is the depth scale, L is the
length scale, R, is the Rossby number,

si=—mx+r 1), g=—ry, gy=-rz—%rx*+x—lr (1)) (23a,b,0)
H(x,y,2) =%y +2x+ Y%(w,} —2)xt - ax* + (1/8)x*, w2 =1+8?, (24)

er=56/2R D is a friction coefficient related to the eddy viscosity of the ocean flow, er and
er(t) are, respectively, the steady and fluctuating wind stress divided by the wind stress
scale 7., and é; is the depth of the ocean’s bottom Ekman layer, assumed to be
independent of the wind stresses (Allen et al., 1991). We consider the spectrum of the
horizontal wind velocity fluctuations developed by Van der Hoven (1957). The spectrum
(Fig. 2) has three main portions: one portion with a peak at a period of about 4 days, a
second portion, known as the spectral gap, having negligible energy and extending over
periods of about 5 hrs to 3 min, and a third portion, with a peak at a period of about 1
min, where fluctuations have relatively small spatial coherence and therefore have a
negligible overall effect at the scale of our problem (Simiu and Scanlan, 1996). The units
of ¥, (w) are m*/s? . For the spectrum of Fig. 2 the standard deviation of the wind
velocity fluctuations u(r) is g, =1.33 m/s.

Under certain reasonable simplifications with respect to the wind structure (Simiu,
1996) we may assume that the spectral density of the wind stresses at the ocean surface
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FIGURE 2. Spectral density of wind speed fluctuations.
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is approximately proportional to 2x¥,(w). We then write ey [2x¥ (w)]=

(27, (w)/0,], where ey is the standard deviation of the wind stresses er(f) = ey G(1),
and the standard deviation of G(/) is unity. Assuming the wind velocity fluctuations are
Gaussian, it follows from the assumed proponionality between the fluctuating winds and

hn aiinfann cteacean that tha lnttar nea nlan lainnine
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The Melnikov process is

co

M@) = rC, + | g(E)r(k +ndt (25)

- 00

where g(£) is a linear filter whose transfer function is jCy(w) [i=(—1)'?] (i.e., CAw) is
the Melnikov scale factor). Expressions for C, and C, are given by Allen et al. (1991).
The expectation and variance of the Melnikov process are

EIM(®)]=rC, : (26)

v oo
Var[M(t)] = - | C(w){2x¥ (w)]dw. 27
2 0

4.2 Example

We consider the case, studied by Allen et al. (1991) for harmonic excitation, §=0.3003,
7,/r=3.236x10"°. The unperturbed system has the fixed points {0,0}, {1.236,0} and
{1.764,0}. Calculations yield C,*=2.524, C;"=~7.076, where the superscripts — and
+ indicate the left- and right-hand side well, and

C,*(w)=—4.8sinh(2.064w)/sinh(5.5w), C,”(w)=—4.8sinh(3.436w)/sinh(5.5w) (28a,b)

For harmonic forcing er(f) =€(2)"*ycos(wr) with @ = 1 (a case examined by Allen et al.
(1991) and assumed therein to correspond to a dimensional time T, =4 days), C,* =
-0.152, C,"=-0.609, and the necessary condition for escapes from the left well is
satisfied for y/r > 8.22, where ey is the standard deviation of the harmonic forcing.
This criterion may be misleading if the forcing is actually random with v/r=8.22
or even smaller. Consider the forcing with spectrum e*y’[2x¥,(w)], where ey now
denotes the standard deviation of the srochastic forcing. Figures 3a and 3b show,
respectively, the square of the Melnikov scale factor, [C, (w)]?, and the spectral density
of the Melnikov process for y=1, 2a¥,,_(w) = [C,"(w)]}(2x¥ (w)]. The transfer
function reduces the spectral components with frequencies w > 1 or $0, and amplifies
lower frequency components. Equation 18a applied to 2x¥,,,_(w) and 2x¥,,, (w) yields
v=0.0702 and »*=0.0534, respectively. The standard deviations of the Melnikov
process are g, = 0.359y and o, =.0.778, respectively, 50 x_=|E[M _)/o,,.| = 9.1r/y
and «, = |EIM, )/ 0y, | =7.03r/y. We assume /r<8.22, say, y/r=4, so x_=2.273 and
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FIGURE 3. (a) Square of Melnikov scale factor, [C, (w)]"; (b) spectral density 2x¥,, ().

x,=1.76. From Eq. 17, r(x_)=188.6 (i.e., 188.6 X 4/(2x)=119.7 days) and
7,(x,)=88.5 (56.3 days) (the left well being larger than the right well). A lower bound
for the probability that no escapes will occur from the left well during a time interval
T=1 month (i.e., 47.1 nondimensional time units) is py r_.imo =0.78 (Eq.19). For the
right well py r( wimo =0.59.

Suppose a decision would hinge on whether the probability that the motion will not
escape from the larger well is at least 0.75 during one month. In our case the lower
bound py 7 «ime =0.78 would provide a conservative basis for such a decision.

5. Snap-through of Continuous Buckled Column With Distributed Random Load

In this section we illustrate the use of the Melnikov approach to obtain criteria on the
occurrence of noise-induced jumps in a spatially-extended dynamical system (i.c., a
system governed by a partial differential equation with space and time coordinates). The
system chosen for this illustration is a buckled column with continuous mass, subjected
to a transverse continuously distributed force that varies randomly with time. The force
may be due, for example, to seismic motion, pressures induced by air flow turbulence,
or effects arising in hydrodynamical systems.

For a deterministic counterpart of our problem -- a buckled column with uniform
mechanical properties over its length, subjected to a transverse uniformly distributed load
varying harmonically in time —~ a Melnikov-based necessary condition for the occurrence
of snap-through was obtained by Holmes and Marsden (1981). This condition is used as
building block for the extension of the Melnikov approach to the case of random
transverse loading (Franaszek and Simiu, 1996b).

Assume that (a) the mechanical properties of the column are uniform over its length,
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(b) the behavior of the material is linearly elastic, (c) following the initial, static
deformation of the column due to buckling the distance between the column supports is
fixed, and (d) the column deformations are sufficiently small that, in the Taylor
expansion of the projection of the elemental deformed column length on the line joining
the column supports, terms of power higher than two can be neglected. The equation of
the column is then (Holmes and Marsden, 1981)

1
Zp + 2, + {T — £ U0}z, = {ROLY) — Bz} (29a)
0

R(.D) = yO)cos(wd) + p()G(1) (29b)

where 2(y,0)=Z(Y,7)/A is the dimensionless deflection, Z is the deflection at time 7, Y is
the coordinate along the column length £, y=Y/¢t, A=Z(¢/2) is the static deflection of
the column Z(Y) at coordinate Y={/2, ¢t and r are the dimensionless and dimensional
time, respectively, I'=P,¢%/El, E is Young's modulus, I is the moment of inertia of the
column cross-section,

!
P,=P,+[EA/2t) § (dZ/dY)dY, : (29¢)
0

and P_=kx’El/e* is Euler’s critical buckling load. For additional notations, see
Franaszek and Simiu (1996b). The case of harmonic forcing, that is, p(y) =0, was studied
by Holmes and Marsden (1981), who obtained the result

M(t) = kB+{or)/2+27,/xlky(wo)sin(wit,) (30)
ky = —@2)RT -2, ky(w,) = —(2uw, /x)E"? )sech{w, [2(C-%?)2]}. (1)

For sufficiently small e, the stable and unstable manifolds of the perturbed system
intersect transversely if M(z,) has simple zeros. The dynamics can then be chaotic.
We now consider the case of stochastic forcing and discuss briefly non-resonance
conditions for this case. For harmonic forcing, the nonresonance condition w,!# — A}
must be satisfied so that the solutions of the linearized counterparts of the Galerkin
equations be of order (Xg), rather than O(1). A similar requirement holds if the forcing
is quasiperiodic. However, if the forcing is a stochastic process, then it has components
over a continuous range of frequencies, that is, it may also have elemental components
with frequencies equal to the natural frequencies of the system. In this-case, for white or
colored noise, it can be shown that the solutions are O(ef), { <1 (for white noise {=0.5,
see, e.g., Meirovich, 1967, p. 501). For sufficiently small e the solutions will therefore
be as small as desired, and nonresonance conditions are not required for Melnikov theory
to be applicable. Also, if the noise i$ dichotomous, the probability that its spectral density
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will have a given discrete component is zero, and nonresonance conditions are again not
required. However, if o(y)#0 and () #0, nonresonance conditions must be satisfied
for the harmonic forcing with frequency w,.

For stochastic forcing the Melnikov process has the same form as for the harmonic
excitation case. If ¥(y) =0 and G(¢) is Gaussian with spectrum 2x¥ (w), the Melnikov
process is Gaussian with spectral density, mean, and variance

27 ¥, (w) =27 ¥ (W, (w), EIM]=k,8, (32a,b)

Qo

Var[M]=(a,,/24+2p,/%)* | ¥,(wk;? (w)dw. (32¢)

— Qo

Equations 32 may be used to estimate lower bounds for the mean time between snap-
through events and for the probability that no snap-through occurs during an interval T.
For dichotomous noise, it can be shown that the necessary condition for the occurrence
of snap-through is p,>p, o, =7"£0/12. The condition p, >p,.; guarantees the non-
occurrence of snap-through. For a numerical example, see Franaszek and Simiu (1996b).

6. Melnikov-based Open-Loop Control of Noise-inducgd Escapes

We consider the system
=X, (33a)
£,= = V' +e[yG(1) —x, —aG.(1)] (33b)

where ¢,v,8,a0>0 and ¢ is sufficiently small for Melnikov theory to be approximately
valid. eyG(Y) and —eaGt) are the exciting force and the control force, respectively, and
G(r) is a stationary, ergodic stochastic process with unit variance and spectrum 2#¥ (w).

The mean time of escape from a well 7, can be reduced by adding a suitable control
force. A trivial choice of the open-loop control force would be G.(f) = G(r), e <. For
this trivial choice the ratio g between the average power of the control force and the
average power of the excitation force is o?/y*. Our objective is to obtain open-loop
control forces that would achieve reductions of the system’s mean escape rate comparable
to those achieved by the trivial control, but more efficiently, that is, with a decreased
ratio g. The proposed approach uses the fact that the shape of the Melnikov scale factor
is nonuniform and exponentially decaying so that it indicates which excitation frequencies
are effective or ineffective in inducing escapes. Instead of G(r) = G(f), it would be more
efficient to apply a control force obtained from the process G(r) by filtering out from the
latter the frequency components that do not contribute significantly to the spectral density
of the uncontrolled system’s Melnikov process. The advantage of this approach over the
trivial approach G (r)=G(f) is that it can achieve, with less power, a comparable
reduction of the system’s mean escape rate.
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Simiu and Franaszek (1995, 1997) report numerical simulations which show that
controls that use the information contained in the Melnikov scale factor can stabilize
efficiently a system with random excitation. The degree to which this can be
accomplished in practice depends upon the system under consideration (i.e., its Melnikov
characteristics), the spectral density of the excitation, and the characteristics of the filters
used to obtain the control force. For an approach to open-loop control based on the flux
factor see Frey and Simiu (1996) and Frey (1996).

7. Stochastic Resonance

For a class of multistable systems with noise and a periodic signal, the improvement of
the signal-to-noise ratio (SNR) achieved by increasing the noise intensity is known as
stochastic resonance (SR) (or, as it will be referred to here, classical SR)

The essence of the physical mechanism underlying classical SR can be described as
follows (McNamara and Wiesenfeld, 1989). Consider the motion in a bistable double-well
potential of a lightly damped particle subjected to stochastic excitation and a harmonic
excitation (i.e., a signal) with low frequency w,. The signal is assumed to have small
enough amplitude that, by itself (i.e., in the absence of the stochastic excitation), it is
unable to move the particie from one well to another. We denote the characteristic rate,
that is, the escape rate from a well under the combined effects of the periodic excitation
and the noise, by a=2xn,/T,,, where n,, is the total number of exits from a well during
the time interval T,,. We consider the behavior of the system as we increase the noise
while the signal amplitude and frequency are unchanged. For zero noise, a=0, as noted
earlier. For very small noise we have o <w,. As the noise increases, the ordinate of the
spectral density of the output noise at the frequency w,, denoted P,(w,), and the
characteristic rate « increase. Experimental and analytical studies show that, until a =w,,
a cooperative effect (i.e., a synchronization-like phenomenon), occurs wherein the signal
output power P(w,) increases as the noise intensity increases. Remarkably, the increase
of P{w,) with noise is faster than that of P,(w,). This results in an enhancement of the
SNR. The synchronization-like phenomenon plays a key role in the mechanism just
described.

Melnikov theory yields qualitative results on the basis of which useful inferences can
be made on the behavior of systems exhibiting stochastic resonance. Basically, we use
the fact that for a wide class of systems, deterministic and stochastic excitations play
qualitatively equivalent roles in inducing chaotic motions with escapes over a potential
barrier, the motions being in both cases topologically conjugate to a shift map. This fact
suggested the extension of SR approaches beyond classical SR. Franaszek and Simiu
(1996a) showed that the SNR can alternatively be improved by keeping the noise
unchanged and adding a deterministic éxcitation selected in accordance with Melnikov
theory, rather than by increasing the noise. They also presented qualitative arguments
and results of numerical simulations according to which this extension (1) significantly
improves our ability to enhance SNR, (2) broadens the range of phenomena explainable
by SR, and (3) allows the development of effective practical devices for enhancing SNR.
Also, since Melnikov theory provides information on excitation frequencies that are
effective in increasing a system's characteristic rate, the chaotic dynamics approach
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makes it possible to assess the role of the excitation’s spectral density in the enhancement
of the SNR, a problem of interest in classical SR for which other available approaches
can be unwieldy.

We review briefly the principle of a nonlinear transducing device for improving a
signal’s SNR was proposed proposed by Franaszek and Simiu (1996a). Consider a signal
for which the SNR is unsatisfactory. The signal and the attendant noise — from which
we filter out components well separated from the signal, that is, components with
frequencies exceeding, say, three times the signal frequency — are used to excite the
transducing device, consisting for example of a Duffing-Holmes oscillator. The SNR of
the output will in general be poor, but under certain conditions it can be improved by the
addition of a harmonic excitation with frequency equal or close to the frequency of the
Meinikov scale factor's peak. The role of the added harmonic excitation is to bring about
a chaotic motion with characteristic rate close to the signal frequency. To illustrate the
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log P(w)
®
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]

—44
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FIGURE 4. Averaged power spectra of {a) input consisting of stochastic excitation, harmonic signal with
frequency w, = 0.069, and additional harmonic excitation with frequency w, = 1.1; (b) output of transducing
device (logarithms in base 10).
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principle of the device, we show in Fig. 4a the spectrum of a signal A sin(wr), A,=0.05,
w,=0.069 in the presence of noise broadband white noise yG(t), 8=0.25 and y*=0.36.
Using a low passband filter, we filter out the noise components with frequencies larger
than three times the frequency of the signal. The signal and the noise left after the
filtering (i.e., the noise yG(f)H(3w,), where H denotes the Heaviside step function) are
used as input to a standard Duffing-Holmes oscillator. For 4,=0 the SNR of the output
is not better than the input SNR. However, by subjecting the nonlinear system to the
additional excitation Asin(w,) (4,=0.23 and w,=1.1) we obtain the result with a
considerably enhanced spectrum at the signal frequency shown in Fig. 4b.

8. Modeling of Auditory Nerve Fibers

The auditory nerve fiber is a natural device of interest to both neurophysiologists and
signal processing engineers. Experiments have established two basic features of its
dynamics. First, mean firing rates produced by harmonic excitation in the presence of
weak noise are largest for excitation frequencies contained in a relatively narrow “best”
interval; for frequencies outside that interval mean firing rates decrease and, for both low
and high frequencies, become vanishingly small (Rose et al., 1967) (Fig. 5). Second,
white or nearly white noise excitation results in multimodal interspike interval histograms
(ISIH’s) with modes approximately equal to integer multiples of the period corresponding
to the nerve fiber’s “best” frequency (Ruggiero, 1973) (Fig. 6). (For any given
experiment an ISTH represents the number of occurrences of firings as a function of the
time interval separating them.)

The Fitzhugh-Nagumo (FHN) model appears to be unable to reproduce these two
dynamical features. According to Hochmair-Desoyer et al. (1984), in the absence of noise
the FHN model predicts correctly that, as the excitation frequency increases beyond the
“best” frequencies, the amplitude of the harmonic signal needed to cause firing increases
sharply. However, the model fails to predict a similarly sharp increase for excitation
frequencies lower than the “best” frequencies (Fig. 7). In the presence of noise the
disagreement between typical FHN model predictions and the experimental results of
Rose et al. (1967) appears to be even stronger (Hochmair-Desoyer et al., 1984, p. 561).
Also, according to Longtin (1993), for nearly white noise excitation the FHN model
yields a unimodal ISIH (Fig. 8), in disagreement with Ruggiero’s experiments.

This section describes an asymmetric bistable model which, in contrast to the FHN
model, reproduces the experimentally observed dynamical features noted earlier. The
model is also consistent with experimental results on response patterns for excitation by
two harmonics in the presence of spontaneous activity. Its performance can be interpreted
transparently in terms of Melnikov theory.

8.1 Asymmetric Bistable Model of Auditory Nerve Fiber Response
The proposed model for the response of the auditory nerve fiber is the equation

X'= = V' (%) + (X}, CO8(wey ) +76C08(wal) +0G(N) — B X1, (34)
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FIGURE 5. Dependence of X on frequency and amplitude of harmonic excitation. (K=number of spikes
observed in 20 s for harmonically excited auditory nerve fiber in squirrel monkey.) Interrupted lines indicate
levels of spontancous firing. (After Rose et al., 1967)
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FIGURE 6. Interspike interval histogram for response to white noise of auditory nerve fiber in squirrel monkey.
Interrupted line indicates level of spontancous firing rate. Modes are approximately equal to integer multiples
of the “best™ period . (After Ruggiero, 1973.)
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e(x) =1 —H(x) 35)
where H(x) is the unit step (Heaviside) function, and
V(x) = a(x)(—x/2 +x*14) 36)

1.0

7min
o
(3]

3

0.0
0.1 3.5
w

FIGURE 7. Dependence of minimum amplitude needed to produce firings, ¥,.., on frequency of the harmonic
excitation in the absence of noise, as modeled by Fitzhugh-Nagumo equation. Horizontal scale is logarithmic.

(After Hochmayr-Desoyer, 1984.)
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FIGURE 8. Interspike interval histogram for response induced by white noise as simulated by the Fitzhugh-

Nagumo equation. (After Longtin, 1993.)
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is a strongly asymmetric, modified version of the Duffing-Holmes potential. In Eq. 3
o(x)=1 for x<0 and ax)=e, for x>0, where a,» 1. (It can be verified easily th;
V'(0)=0.) The potential V(x) is depicted in Fig. 9a for o, =49.

For the perturbed system chaotic transport — escapes — can occur only in the hals
plane x <0, since owing to the form of Eq.34 the system remains unperturbed for x>(
The Melnikov necessary condition for chaos must then be satisfied for the shallowe
potential well of Fig. 9a. The corresponding Melnikov scale factor is

S(w)=(2)"*xwsech(rw/2) 37

(Fig. 10). Figure 10 shows that for our model, just as for the experiments of Rose et al
(1967), excitation components become increasingly ineffective in inducing chaos an
therefore escapes as their frequencies are farther away from a “best” frequency. (Th
term “escapes” corresponds in our model to the the neurophysiological term “firings.”

Throughout this section it is assumed that the two-sided spectral density of G(r) i

27 ¥ (w)=2¢/(1 +c%w’) (38

in which ¢=0.02, that is, the spectral density varies slowly with frequency and i
therefore a close approximation of white noise.

Equation 34 is a bistable system whose unperturbed counterpart has homoclinic orbits
Therefore, depending upon its parameters, our model of the auditory nerve fiber ca
experience stochastic resonance. Although experimental results on the stochasti
resonance of some types neurons are available, to our knowledge none have beer
reported for the auditory nerve fiber.

1 7
(») (v)
g I DS SR ~ @ r
r
-14 -
~2.0 0 1.5 e 1.8

FIGURE 9. (a) Potential W(x) (a,=49); (b) phase plane diagram showing homoclinic orbits and an orbil
visiting the half-planes x<0 and x> 0. '
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FIGURE 10. Melnikov scale factor S{w).

8.2 Chaotic Res,bonse to Harmonic and Stochastic Excitation

We now describe a typical chaotic motion pattern for our model. Denote by R~ the
perturbed system’s counterpart of the core enclosed by the homoclinic orbit (separatrix)
I' ~. Following an escape from R™, firing occurs and the motion evolves outside the core
enclosed by the impermeable separatrix I'* until its return to the half-plane x <0. Chaotic
transport into R7, followed by another escape (firing) can then occur again. A typical
time history of this type of motion is shown in Fig. 11, based on Eq. 34, the potential
function of Fig. 9a, the parameter values v, =0.11, y,=0, $=0.16, ¢=0.005, v, =1.0,
and the spectral density of the process G(¢) given by Eq. 35. The weak noise used in the
simulations is intended to mimic the noise inducing the fiber's spontaneous activity. As
noted by Rose et al. (1967, p. 776), the responses may exhibit multiple firings in
response to a stimulating cycle, rather than a single discharge. A double firing can be
seen in Fig. 11 at ¢/T,, =80.

8.3 Dependence of Mean Firing Rate on Frequency of Harmonic Excitation

In view of the dependence of the model response on the Melnikov scale factor (Fig. 10),
response patterns are similar qualitatively to those obtained experimentally (Fig. 5). We
assume v,,=0, 8=0.16, 6=0.005, and the spectral density of G(r) given by Eq. 38. We
show in Fig. 12 the dependence of the mean firing rate r on the frequency w,, for two
amplitudes of the harmonic forcing: +,,=0.12 and v,, =0.10. For any given frequency,
the larger amplitude causes a larger firing rate. For both amplitudes the harmonic
excitation is seen to be increasingly ineffective in producing firings as the excitation
frequencies are farther away from either end of a relatively narrow “best” frequency
interval. The dependence of the mean firing rate on amplitude and frequency is indeed
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FIGURE 11. Time history of motion induced by harmonic excitation in the presence of noise (Eq. 34).
(TM = 2*/“’.! -)

qualitatively similar to the experimental results of Fig..5. The results of Fig. 12 are
consistent with Melnikov theory only in a qualitative sense since the peak of the Melnikov
scale factor (Fig. 10) does not coincide with the peaks of the mean rate plots. This is due
to second order effects resulting from the relatively large perturbation.

8.4 Interspike Interval Histograms

We assume again v, =0, $=0.16, ¢=0.005, and the spectral density of G(r) given by
Eq. 38. Figures 13ac show ISIH’s for v,,=0.12 and w, =1.25, w,, =1.05, and w,=0.8,
respectively. The “best” frequency in this case is wy,, =1.1 (Fig. ), that is, Figs. 13a-c
correspond, respectively, to harmonic excitation frequencies higher than, approximately
equal to, and lower than the “best” frequency. The period of the harmonic excitation is
Toi=2x/w,,. The ISIH’s of Figs. 13a-c were obtained by simulation from Eq. 34. They
are multimodal and agree qualitatively with ISIH's based on experiments (Rose et al,
1967). Both for the experiments and for Figs. 13a-c the peaks in the ISIH's are grouped
around the integer multiples of the period of the harmonic excitation. Nevertheless, the
firing is aperiodic, which is consistent with the fact that the motions are chaotic. The
preference for the forcing period and its integer multiples reflects the large spectral
ordinate of the response at the forcing frequency (which is typical of the harmonically
forced Duffing oscillator (Guckenheimer and Holmes, 1986, p.88]), and the
corresponding subharmonics. Note the presence in Fig. 13 of components with periods
shorter than the dominant period. As was pointed out by Rose et al (1967, p.776), these
components reflect the existence of multiple firings.
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FIGURE 12. Dependence of firing rate 7 on harmonic excitation frequency for two excitation amplitudes v,,,
simulated by Eq. 34 with harmonic excitation in the presence of noise.

ISIH’s based on the FHN model (Longtin, 1993) are, like the results of Fig. 13a-c,
in qualitative agreement with the experimental results of Rose et al (1967). However, for
excitation by nearly white noise the FHN model does not appear to be in agreement with
the experimental results of Ruggiero (1973): the IHIS’s obtained from those experiments
of are multimodal, whereas those based on the FHN model were found to be unimodal,
as shown in Fig. 7 (Longtin, 1993). In contrast, simulations based on Eq. 34 agree well
with the experimental results of Ruggiero (1973)]. This is illustrated by Fig. 13d, which
shows a typical ISIH based on Eq. 34 with the same parameters as those of Figs. 13a-c,
except that v, =0 and ¢=0.035, that is, the only excitation is stochastic. The ISIH is
multimodal with periodicities closely related to the “best™ frequency. The results of Fig.
13d are consistent with Melnikov theory since components with the “best” frequencies
— frequencies closely related to the frequency of the Melnikov scale factor’s peak —
are the most effective in inducing escapes. The behavior of the system can therefore be
expected to be determined by those components and their integer muitiples.

Melnikov theory as applied to our model is also in qualitative agreement with results
of experiments in which auditory nerve fibers were excited by two harmonic functions
in the presence of spontaneous activity (Hind et al., 1967). In those experiments the
frequency of one of the harmonic excitations, denoted w,, was close to the “best”
frequency wy,,, While for the second harmonic wy, <wye,, S0 that its effectiveness in
inducing firing was relatively weak. The results of Hind et al. (1967) indicated that the
ISIH’s are multimodal, with basic period T,, =2x/w,, or T,,=2%/w, according as the
ratio 7 =+,,/v,; of the amplitudes corresponding to w, and w,, is
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FIGURE 13. Interspike interval histograms simulated from Eq. 34: (a-c) Harmonic excitation in the presence
of noise for excitation frequency larger than, approximately equal to, and smaller than the "best” frequency,
respectively; (d) excitation by nearly white noise. T,; and T, denote the period of the harmonic excitation and

the period corresponding to the “best™ frequency, respectively.
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FIGURE 14. Interspike interval histograms simulated from Eq. 34 for excitation by two hamonics in the
presence of noise. Dominant frequencies are controlled by: (a) excitation with inefficient frequency
but relatively large amplitude, (b) excitation with frequency close to “best” frequency.
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condition from chaos. Even though S(w,) is larger than S(wp), if the ratio n is
sufficiently small the motion can be dominated by the harmonic with inefficient
frequency. That this is indeed the case is shown by the simulations of Fig. a,b, for which
Wy =1.0= O w2=0.06 €Wy, £=0.25, and ¢=0.0075. For Fig. 14a, v, =0.01 and
7.2=0.3 (n= 0.033). Apart from the two peaks at ¢/T, <1, which are ascribed to
multiple firings, the spikes are grouped around the period T, and its integer multiples.
For Fig. b, v, =0.1, v,,=0.16, and period T,, controls.
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